Tutorium: Optimal Estimation

Dieses Tutorial wird in Englisch angeboten. Alle anderen Tutorials werden auf Deutsch angeboten.

Optimal Estimation – Beyond Least Squares

Whether it is parameter estimation, data smoothing or statistical evaluations – least squares is the workhorse of geodetic data analysis. But it is not an inevitability.

 

In this tutorial we will survey modern open-source algorithms for optimization and use them to formulate and solve estimation problems beyond the capability of least squares. Python notebooks help us in practically integrating robustness guarantees, equalities, and inequalities into estimation problems. Concrete application examples from engineering geodesy and a discussion of similarities and differences to classical adjustment theory complement the practical and interactive parts of this tutorial.

Leitung

Dr. Jemil Avers Butt

ETH Zürich
Institut für Geodäsie und Photogrammetrie
Geosensorik und Ingenieurgeodäsie

Mitwirkende

Dr. Tomislav Médic

Zielgruppe / Voraussetzung

The target audience comprises IVK participants with a practically oriented or scientific background who are involved in data analysis and are either reaching the limitations of classical methods or are interested in an overview of modern estimation techniques and tools.  Some experience in computer programming, especially Python, is useful but not strictly necessary. Participants need their own individual Google-account to access the practical parts of the tutorial in Google Colab.

Sprache

English

Zeit

Mittwoch 12.4.2023 – 13:30-17:30

Teilnehmeranzahl

5 TN – 20 TN

Ort

ETH Hönggerberg, Gebäude: HIL C 71.1